

Estrogenic Potency of Food-Packaging-Associated Plasticizers and Antioxidants As Detected in ER α and ER β Reporter Gene Cell Lines

MARCEL G. R. TER VELD,^{*,†} BASTIAAN SCHOUTEN,^{†,‡} JOCHEM LOUISSE,[†]
DAAN S. VAN ES,[§] PAUL T. VAN DER SAAG,[#] IVONNE M. C. M. RIETJENS,[†] AND
ALBERTINKA J. MURK[†]

Toxicology section, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands;
Agrotechnology and Food Innovations, P.O. Box 17, 6700 AA Wageningen, The Netherlands; and
Hubrecht Laboratory/NIOB, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands

This study presents the estrogenic potency of 21 food-packaging-associated compounds determined for the first time, using two transfected U2-OS (human osteoblasts devoid of endogenous estrogen receptors) estrogen receptor (ER) alpha and beta cell lines. Six plasticizers and three antioxidants were slightly estrogenic in the ER α cells. The model compounds bisphenol A and nonylphenol, one plasticizer [tris(2-ethylhexyl)trimellitate (TEHTM)], and two antioxidants (propyl gallate and butylated hydroxyanisole) were estrogenic in both ER α and ER β cells. Compared to estradiol (E₂), these compounds appeared to be relatively more estrogenic in the ER β cells than in the ER α cells. Three sorbitol-based plasticizers activated neither ER α nor ER β and may be good replacements of existing plasticizers. All responses were additive with the response of E₂. This indicates that they may contribute to the total effects of the pool of estrogenic compounds humans are exposed to. The estrogenic potencies of these compounds, together with the suggested beneficial effect of ER β -mediated responses and adverse ER α -mediated effects, support the importance of detecting characteristics for ER α and ER β response separately in independent models, as done in the present study.

KEYWORDS: Antioxidant; endocrine disrupter; ER α ; ER β ; estrogen; food packaging; plasticizer; pseudo-estrogen

INTRODUCTION

Incidence of hormone-related cancers, especially breast cancer, are increasing worldwide (1). In The Netherlands, age-specific breast cancer incidence increased by 23% in the period from 1989 to 2000 (2). In addition to some known risk factors such as radiation exposure (3), genetic predisposition (4), alcohol intake (5), and a higher fat intake (in animal studies) (6), estrogenic compounds, such as natural estrogens and pseudo-estrogens, are suspected of increasing a woman's risk of developing breast cancer (7). Pseudo-estrogens are all estrogenic active compounds that are not naturally present in the female body. In vitro, some of these pseudo-estrogens (genistein and quercetin) cause cell proliferation of breast cancer cells via interaction with the estrogen receptor (8).

At least two different estrogen receptors (ER) exist, namely, ER α and ER β (9). Besides differences in binding capacities for

specific ligands there are differences in tissue distribution of the two receptors. In the mammary gland, uterus, and testes ER α is the predominant receptor (10). The ovary contains both receptor subtypes in large amounts, and in the prostate ER β is the most abundant receptor (10). Upon ligand binding homo- and heterodimers of the ER α and ER β can be formed in vivo and in vitro, and these dimers can activate the estrogen responsive elements initiating gene expression. It has been suggested that the ER β might modulate the estrogenic effects of the ER α by forming heterodimers with ER α , thereby reducing the ER α -mediated response, resulting in, for example, inhibition of ER α -mediated proliferation of breast cancer cells in vitro (11–14). The inability to obtain a full-length cDNA of the ER β without mutation (15) from mRNA isolated from the human T47D breast cancer and Caco-2 colon cancer cells further supports the idea that ER β activation may be beneficial and modulate possible adverse ER α -mediated estrogenic effects. Given the differential biological responses upon ER α or ER β activation, it is of importance in the study of endocrine-disrupting compounds to characterize their interaction with both receptors separately. Therefore, the objective of the present study was to characterize the ER α - and ER β -mediated estrogen

* Author to whom correspondence should be addressed (telephone +31-317485271; fax +31-317484931; e-mail marcel.terveld@wur.nl).

† Wageningen University.

‡ Present address: Utrecht Institute for Pharmaceutical Sciences, Sorbonnelaan 16, 3584 CA Utrecht, The Netherlands.

§ Agrotechnology and Food Innovations.

Hubrecht Laboratory/NIOB.

response of a wide range of food contaminants and existing and newly developed direct and indirect food additives for their ER α - and ER β -type estrogenic potential.

Some endocrine-disrupting compounds are known for their estrogenic activity, such as phthalates (16–20), nonylphenol (NP) (20–24), and bisphenol A (BPA) (20, 25–29). Human intake of these and other pseudo-estrogens is mainly via food and originates from natural food chain constituents, containing, for example, pseudo-estrogens, from a contaminated environment (for example, DDT), from food packages (BPA) (26), and/or from additives such as antioxidants or plasticizers used in packaging material (30).

In the present study we determined the ER-type specific estrogenic potency of food-associated compounds by using two different human osteoblastic (U2-OS) reporter gene cell lines. U2-OS cell lines are devoid of endogenous estrogen receptors. The two transfected cell lines stably express either ER α or ER β in addition to 3xERE-tata-Luc as a reporter gene (31).

The compounds tested are estradiol (E₂, as a reference), BPA, NP, included in the studies to allow comparison with existing literature data (23, 32–34), eight existing plasticizers, three newly developed plasticizers based on sorbitol, and nine existing antioxidants. All plasticizers and antioxidants are generally used in food-packaging material and were therefore included in the present study to investigate their estrogenicity, of which little is known so far. **Table 1** summarizes and presents all compounds studied.

MATERIALS AND METHODS

Chemicals and Reagents. E₂ (>98%), BPA (>99%), and tricine (>99%) were obtained from Sigma (Zwijndrecht, The Netherlands). NaHCO₃ (>99.5%), NaOH (>99%), EDTA·2H₂O (>99%), MgSO₄·7H₂O (>99.5%), 1,4-dithiothreitol (>99%), (L+) ascorbic acid (>99.7%), and diethyl ether (>99.7%) were obtained from Merck (Darmstadt, Germany). Dimethyl sulfoxide (DMSO, >99.9%) was obtained from Acros (Geel, Belgium). Tris(hydroxymethyl)aminomethane (>99.9%) was obtained from Invitrogen (Carlsbad, CA). D-Luciferin (>99.5%) was obtained from Duchefa (Haarlem, The Netherlands). *trans*-1,2-Diaminocyclohexane-*N,N,N',N'*-tetraacetic acid monohydrate (CDTA, >99%) and NP (~85%; technical mixture) were obtained from Fluka (Buchs, Germany). (MgCO₃)₄Mg(OH)₂·5H₂O was obtained from Aldrich (Milwaukee, WI). Di(2-ethylhexyl) phthalate (DEHP) was obtained from TCI (Tokyo, Japan). ATP was obtained from Roche (Mannheim, Germany). All plasticizers and antioxidants (**Table 1**) are of technical grade. To enable the reader to search for the compounds in **Table 1**, all compounds are numbered in sequence. Sorbitol-based plasticizers were produced by Agrotechnology and Food Innovations, Wageningen UR, in the project sugar polyol based plasticizers, aiming at the development of efficient, undisputed, renewable esters as plasticizers and solvents. CAS Registry Numbers are given in **Table 1**. All chemicals were dissolved and diluted in DMSO. Food-packaging-associated compounds were tested at least two times in five concentrations ranging from 0 to 5 \times 10⁻⁵ M. As in vivo exposure to pseudo-estrogens always occurs in combination with the presence of endogenous hormones, the compounds were also tested with E₂ present at its EC₅₀ value in both cell lines. To this end the cells were incubated with the tested compounds at doses ranging from 0 to 5 \times 10⁻⁵ M in the presence of E₂ at its EC₅₀ value for agonist action.

Cell Culture. U2-OS ER α and ER β cells (31) were cultured in a 1:1 mixture of Dulbecco's modified Eagle's medium (DMEM) and Ham's nutrient mixture F12 (31331-028, Gibco), buffered with 1260 mg/L NaHCO₃, supplemented with 7.5% fetal calf serum (FCS, Australian origin, 10099, Invitrogen) and 0.5% nonessential amino acids (minimal essential medium 100 \times , 11140-035, Gibco). ER α medium was supplemented with genetin (200 μ g/mL, Invitrogen) and hygromycin (50 μ g/mL, Duchefa) as selection markers. ER β medium was supplemented with genetin (200 μ g/mL) only. Cells were cultured at 37 °C at 7.5% CO₂ in a humidified atmosphere.

Luciferase Assay. U2-OS cells were washed twice with phosphate-buffered saline (PBS, without Ca²⁺ and Mg²⁺; Gibco), trypsinized (Gibco) and diluted in a 1:1 mixture of DMEM and Ham's F12 medium without phenol red (21041-025, Gibco), buffered with 1260 mg/L NaHCO₃, supplemented with 5% dextran-coated charcoal (DCC)-stripped FCS (36) and 0.5% nonessential amino acids. ER α cells were seeded at a density of 10000 cells/well and ER β cells were seeded at a density of 7500 cells/well in 96-well Nunclon plates (167008, NUNC). After 24 h, assay medium was renewed, and 24 h later, assay medium was removed and replaced by 100 μ L of exposure medium, with test compounds dissolved in DMSO concentrations of 0.1%. For combination experiments DMSO concentrations were 0.2%. All experiments with antioxidants used 700 μ M ascorbic acid in the exposure medium to prevent autoxidation. Compounds were tested in triplicate; outer rows were filled with 200 μ L of sterile PBS to prevent effects of evaporation on the outer side of the plates. After 24 h of exposure, medium was removed and cells were washed with 0.5 \times PBS. Cells were lysed with 30 μ L of hypotonic low-salt buffer (10 mM Tris, 2 mM DTT, and 2 mM CDTA; pH 7.8). Plates were put on ice for 15 min to allow swelling of the cells and subsequently frozen at -80 °C for at least 30 min to lyse the cells. Plates were thawed on ice and shaken for 2 min at room temperature. Luciferase activity was measured at room temperature in a luminometer (Labsystems, Luminoskan RS). First, background light emission was measured for 2 s, then 100 μ L of "flashmix" [20 mM tricine, 1.07 mM (MgCO₃)₄Mg(OH)₂·5H₂O, 2.67 mM MgSO₄, 0.1 mM EDTA·2H₂O, 2 mM DTT, 0.47 mM d-luciferin, and 5 mM ATP; pH 7.8] was automatically injected, and light emission was immediately measured during 2 s and extinguished with 50 μ L of 0.2 M NaOH to stop the reaction.

Data Analysis. Relative light units (RLUs) in every well were corrected for the corresponding background signal, measured before luciferin addition. To be able to compare all data, the response of the solvent control (0.1% DMSO for single and 0.2% for combination experiments) was set at 0%. The maximum induction of luciferase obtained at 10 pM E₂ for ER α cells and at 1250 pM E₂ for ER β cells was set at 100%. In every experiment an E₂ calibration curve was included using 0, 0.3, 1, 2, and 10 pM E₂ for ER α and 0, 10, 60, 100, and 1250 pM E₂ for ER β . Dose-response curves were fitted using Slidewrite 6.10 for Windows.

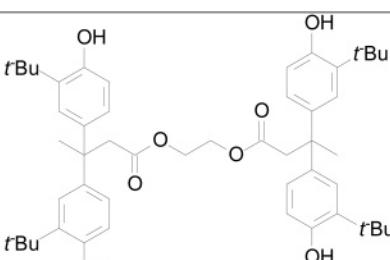
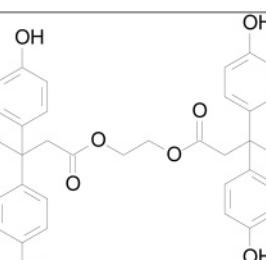
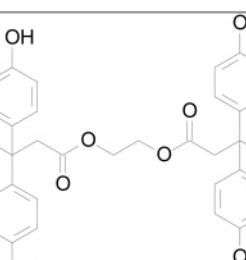
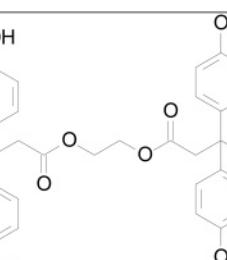
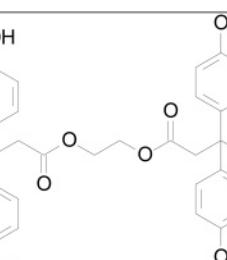
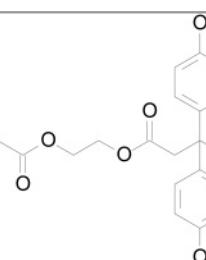
Estradiol equivalency factors (EEF₁₀ = EC₁₀ estradiol/EC₁₀ compound) were calculated for the responses in ER α and ER β cell lines. EC₁₀ values were interpolated from the E₂ calibration curves; the EC₁₀ values were used instead of EC₅₀ values because for less potent compounds factors such as insolubility hamper measurements at higher concentrations. For the more potent compounds, such as BPA and NP, also EEF₅₀ values were calculated as EC₅₀ estradiol/EC₅₀ compound (**Table 2**).

Responses were taken into account only when they were above the limit of quantification (LOQ), defined as the DMSO response plus 3 times its standard deviation (SD). The limit of detection (LOD) was defined as the DMSO response plus 2 times its SD. The LOQ interpolated in the E₂ curve gave the lowest effect concentration (LEC).

RESULTS

Estradiol (1, E₂) Calibration Curve. Exposure of the ER α and ER β cell lines to increasing concentrations of E₂ (**1**) resulted in sigmoidal dose-response curves (**Figure 1**). The LEC for ER α cells was 0.3 pM (\pm 0.3), and the LEC for ER β cells was 6.6 pM (\pm 3.9). EC₅₀ values differ almost 20-fold, being 6.6 (\pm 1.6) pM for ER α cells and 124.2 (\pm 29.6) pM for ER β cells. The maximum RLU value in the ER α cell line was 5 times higher than the maximum RLU value in the ER β cell line. When expressed as induction relative to DMSO, however, the maximum induction of the ER β cell line was 12 times higher than that in the ER α cell line, because of the relatively high background signal in the ER α . To be able to compare dose-response curves, results are presented on scales from 0 to 100% induction by E₂ (**Figure 1**). From **Figure 1** it can be derived that at 30 pM E₂ luciferase induction in the ER α cells declines,

Table 1. Food-Packaging-Associated Compounds Tested for Their Estrogenicity in the ER α and ER β Reporter Gene U2-OS Assays, Including Their Molecular Structures and CAS Registry Numbers^a







Compound	Structure	CAS no.
1 17 β -estradiol (E ₂)		[50-28-2]
2 Bisphenol A (BPA)		[80-05-7]
3 Nonylphenol (NP); 85%, technical mixture		[104-40-5]
<u>Plasticizers</u>		
4 Diisoheptyl phthalate (DIHP)		[41451-28-9]
5 Isosorbide di 2- ethylhexanoate (IsDEH)		[94593-67-6]
6 Tris (2-ethylhexyl) trimellitate (>99%) (TEHTM)		[3319-31-1]
7 Phenyl alkylsulfonate		[91082-17-6]
8 Octyl epoxy stearate		[128514-16-9]
9 Benzoate mixture (5 compounds)		
9a Dipropylene glycol dibenzoate (89.4%)		[27138-31-4]
9b (2-Propenoxy) propyl benzoate (2.35%)		[197178-94-2]

D1-Me

Table 1. (Continued)

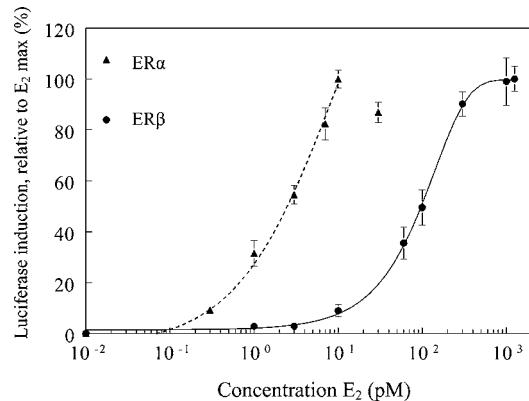
	Antioxidants	Structure	CAS no.
9c	Dipropylene glycol monobenzoate (4.98%)		[32686-95-6]
9d	Propylene glycol dibenzoate (2.29%)		[19224-26-1]
9e	Propylene glycol monobenzoate (0.28%)		[37086-84-3]
10	Epoxidized soy bean oil (ESO)		[8013-07-8]
11	Isosorbide diisobutyrate (IsDiB)		[125344-74-3]
12	Isosorbide di-n-hexanoate (IsDH)		[64896-69-1]
13	Di (2-ethylhexyl) adipate (DEHA)		[103-23-1]
14	Di (2-ethylhexyl) phthalate (DEHP)		[117-81-7]
15	Antioxidant mixture consisting of two compounds		
15a	Pentaerythritol tetrakis[3-(3,5-di- <i>tert</i> -butyl-4-hydroxy-phenyl)] propionate (>96%)		[6683-19-8]
15b	Pentaerythritol tris [3-(3, 5-di- <i>tert</i> -butyl-4-hydroxy-phenyl)] propionate (<4%)		[84633-54-5]

Table 1. (Continued)

16	Octadecyl 3-(3,5-di-tert-butyl-4-hydroxy-phenyl)-propionate		[2082-79-3]
17	Ethylene bis[3,3-bis (3-tert-butyl-4-hydroxy phenyl)butyrate]		[32509-66-3]
18	Amines, bis(hydrogenated rape-oil alkyl)methyl, N-oxides	Unknown	[204933-93-7]
19	2,4,6-Tris (tert-butyl) phenyl-2-butyl-ethyl-1,3-propanediol phosphite		[161717-32-4]
20	Propyl gallate		[121-79-9]
21	3,5-Di-tert-butyl-4-hydroxybenzyl alcohol >97%		[88-26-6]
22	4-Hydroxy-3-methoxycinnamic acid (Ferulic acid)		[1135-24-6]
23	Butylated hydroxyl anisole (BHA)		[25013-16-5]

^a Consecutive numbers for compounds are used to facilitate searching for the compounds in the text.

and therefore this data point was not included in defining the dose-response curve.

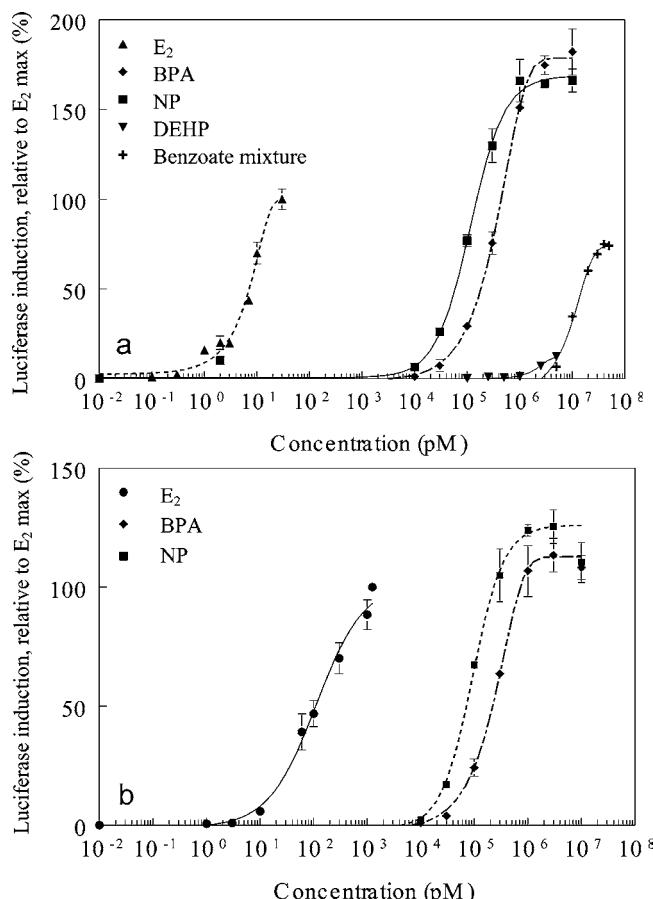

Food-Packaging-Associated Compounds. Figure 2 presents the results from a representative experiment showing the luciferase induction in ER α and ER β cells upon exposure to different food-packaging-associated compounds. The maximum luciferase induction by BPA (2) and NP (3) is higher than the maximum luciferase induction by E₂, especially in the ER α cells (Figure 2). Table 2 presents the EC₅₀ and EEF₅₀ values obtained for E₂, NP, and BPA from a series of four similar independent experiments. To compare results obtained in the ER α and ER β cell line Table 2 also presents the ratio EEF_{10 α} /EEF_{10 β} , which,

by definition, equals 1 for E_2 . If the ratio $EEF_{10\alpha}/EEF_{10\beta}$ of a compound is <1 , this compound is relatively more estrogenic in the $ER\beta$ cell line, showing, compared to E_2 , a relatively higher EEF_{10} in the $ER\beta$ than in the $ER\alpha$ cell line. The $EEF_{10\alpha}/EEF_{10\beta}$ ratios of BPA and NP are ≈ 0.1 , meaning they are relatively more estrogenic as compared to E_2 in the $ER\beta$ cell line than in the $ER\alpha$ cell line.

The results of tested compounds that show activity in the ER α and ER β cell lines are summarized in **Table 3**. All sorbitol-based plasticizers [isosorbide-di-2-ethylhexanoate (**5**), isosorbide diiso-butyrate (**11**), and isosorbide-di-*n*-hexanoate (**12**)], the phenyl alkylsulfonate (**7**), and epoxidized soybean oil (ESO)

Table 2. EC₅₀ and EEF₅₀ Values of Nonylphenol (NP) and Bisphenol A (BPA) Compared to Estradiol (E₂), As Determined in the U2-OS ER α and U2-OS ER β Cell Lines

compound	assay	EC ₅₀ (nM)	EEF ₅₀	EEF ₅₀ α /EEF ₅₀ β	max effect as % relative to E ₂ -max
E ₂	ER α	0.006 \pm 0.002	1	1	100
	ER β	0.124 \pm 0.03	1	1	100
NP	ER α	124 \pm 63	5.3 \times 10 ⁻⁵	0.054	114 \pm 26
	ER β	149 \pm 57	8.3 \times 10 ⁻⁴	122 \pm 10	
BPA	ER α	216 \pm 35	3.1 \times 10 ⁻⁵	0.094	170 \pm 17
	ER β	234 \pm 110	5.3 \times 10 ⁻⁴	116 \pm 11	


Figure 1. Dose-response curves of U2-OS ER α and U2-OS ER β cells exposed for 24 h to estradiol (E₂). The responses are expressed as percent relative to the maximum signal induced by E₂ in the same cell line and are corrected for the signal induced by the solvent (DMSO).

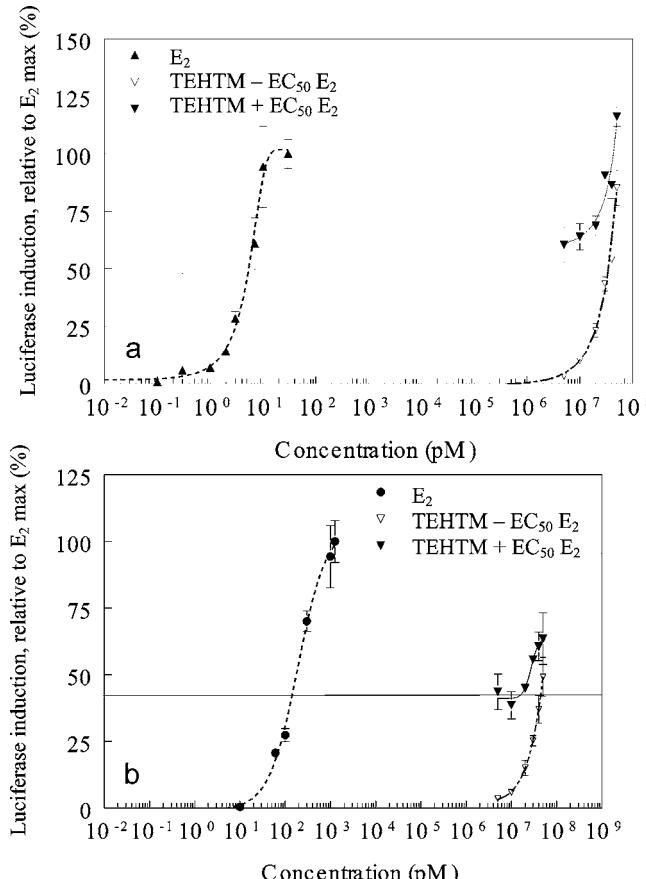
(10) appeared to be nonestrogenic in both cell types. Nonestrogenic antioxidants were the antioxidant mixture [96% pentaerythritol tetrakis[3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)]propionate (15a) and 4% pentaerythritol tris[3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)]propionate (15b)], octadecyl 3-(3,5-di-*tert*-butyl-4-hydroxyphenyl)propionate (16), ethylene bis[3,3-bis(3-*tert*-butyl-4-hydroxyphenyl)butyrate] (17), bis(hydrogenated rape-oil alkyl)-methyl N-oxides (18), 3,5-di-*tert*-butyl-4-hydroxybenzyl alcohol (21), and *trans*-4-hydroxy-3-methoxycinnamic acid (ferulic acid) (22).

Five plasticizers appeared to be estrogenic in the ER α cell line and not in the ER β cell line; these include di-isoheptyl phthalate (DIHP, 4), di(2-ethylhexyl) phthalate (DEHP, 14), di(2-ethylhexyl)adipate (DEHA, 13), octylepoxy stearate (8), and the benzoate mixture [89.4% dipropylene glycol dibenzoate (9a), 2.35% (2-propenoxy) propyl benzoate (9b), 4.98% propylene-glycol dibenzoate (9c), 2.29% propylene-glycol benzoate (9d), and 0.28% propylene-glycol monobenzoate (9e)]. Tris(2-ethylhexyl) trimellitate (TEHTM, 6) was estrogenic in both cell lines with an EEF₁₀ α /EEF₁₀ β ratio of 0.075. The estrogenic potencies of positive compounds as compared to E₂ can all be found in **Table 3**.

The antioxidants propyl gallate (20) and butylated hydroxyanisole (BHA, 23) were estrogenic in the ER α cells as well as in the ER β cells with EEF₁₀ α /EEF₁₀ β ratios of 0.17 and 0.07, respectively. The antioxidant 2,4,6-tri-*tert*-butylphenyl-2-butyl-ethyl-1,3-propanediolphosphite (propanediolphosphite) (19) was estrogenic only in the ER α cells (**Table 3**).

Effects of Combined Exposures. The compounds shown to be active in the ER α and ER β cells were tested in the presence of E₂ at its EC₅₀ level to test whether the responses of these combined exposures are additive. Panels **a** and **b** of **Figure 3**

Figure 2. Dose-dependent induction of luciferase activity (**a**) in the ER α cell line and (**b**) in the ER β cell line by bisphenol A (BPA), nonylphenol (NP), di(2-ethylhexyl)phthalate (DEHP), and a benzoate mixture. DEHP and the benzoate mixture did not induce luciferase activity in the ER β cell line. The responses are expressed as percent relative to the maximum signal induced by E₂ in the same cell line and are corrected for the signal induced by the solvent (DMSO).


show the results obtained for TEHTM (6) in the ER α and ER β cell lines, respectively. Additive effects were observed and similar data were obtained for the other compounds shown to be active in the ER α or ER β cell line when tested alone.

DISCUSSION

The present study investigated the ER-type specific estrogenic potency of some foodborne compounds using two different U2-OS reporter gene cell lines stably expressing either ER α or ER β in addition to 3xERE-tata-Luc (31). The results obtained reveal differences in estrogen activity toward both receptor types of different estrogenic compounds as measured with the U2-OS ER α and U2-OS ER β cell lines. The EC₅₀ of E₂ (1) in the ER α cell line appeared to be 20 times lower than the EC₅₀ of E₂ in the ER β cell line. E₂ tested in an ER α - and ER β -transfected human embryonic kidney (HEK) cell line showed a comparable difference in activation (37). As can be seen in **Table 4**, presenting an overview of EC₅₀ values for E₂, BPA (2) and NP (3) reported in the literature based on other mammalian reporter- and estrogen-dependent cell proliferation models, the EC₅₀ values reported in these literature studies are more in line with the EC₅₀ obtained in the present study in the ER α cells than with the EC₅₀ for the ER β cells (**Table 2**). This suggests that the T47D reporter cell line (ER-CALUX) (23), E-screen (32, 33), and MVLN cell assays (33, 34) detect primarily ER α -type

Table 3. Lowest Effect Concentration (LEC, Concentration That Equals the Effects of DMSO + 3 × SD), Estradiol Equivalence Factors (EEF₁₀), and Maximum Effect of All Estrogenic Compounds Tested Positive within the Present Study Compared to E₂

compounds	ER α			ER β			EEF ₁₀ α /EEF ₁₀ β
	LEC (μ M)	EEF ₁₀	max effect (%)	LEC (μ M)	EEF ₁₀	max effect (%)	
E ₂	0.3 × 10 ⁻⁶	1	100	6.6 × 10 ⁻⁶	1	100	1
NP	0.25	4.6 × 10 ⁻⁵	114	0.01	5.2 × 10 ⁻⁴	122	0.09
BPA	0.18	2.5 × 10 ⁻⁵	170	0.02	2.3 × 10 ⁻⁴	116	0.11
plasticizers							
DIHP	2.3	3.1 × 10 ⁻⁷	33	a	a	a	
DEHP	0.97	2.2 × 10 ⁻⁷	14	a	a	a	
DEHA	25.4	4.9 × 10 ⁻⁸	16	1.7	b	3.1	
TEHTM	8.1	1.2 × 10 ⁻⁷	113	4.9	1.6 × 10 ⁻⁶	76	0.075
octyl-epoxystearate	7.9	1.3 × 10 ⁻⁸	26	a	a	a	
benzoate mixture	3.7	2 × 10 ⁻⁷	72	a	a	a	
antioxidants							
propyl gallate	2.1	6.5 × 10 ⁻⁷	109	2.5	3.9 × 10 ⁻⁶	60	0.17
propanediolphosphite	31.7	1.2 × 10 ⁻⁸	7.4	a	a	a	
BHA	5.9	5.2 × 10 ⁻⁸	18.3	8.4	7.7 × 10 ⁻⁷	15.6	0.07

^a Activity below limit of quantification (DMSO + 3 × SD). ^b Activity too low to calculate an EEF₁₀.**Figure 3.** Dose-response curve of (a) ER α cells exposed for 24 h to estradiol (E₂), tri-2-ethylhexyltrimellitate (TEHTM) alone, and TEHTM + 5 pM E₂ (straight line indicates the EC₅₀ level of E₂) and (b) ER β cells exposed for 24 h to estradiol (E₂), TEHTM alone, and TEHTM + 100 pM E₂ (straight line indicates the EC₅₀ level of E₂). The responses are expressed as percent relative to the maximum signal induced by E₂ in the same cell line and are corrected for the signal induced by the solvent (DMSO).

responses. However, as these cell lines are not specifically free of other endogenous steroid receptors, interactions between the ER, the androgen receptor, and even the progesterone receptor cannot be excluded. This further supports the importance of detecting characteristics for ER β response in an independent cell model such as the U2-OS ER β model used in the present

Table 4. Overview of EC₅₀ and EEF₅₀ Values of Nonylphenol (NP) and Bisphenol A (BPA) Compared to Estradiol (E₂), As Reported in the Literature for Reporter Gene and Proliferation Mammalian Cell Models

compounds	assay	EC ₅₀ (nM)	EEF	% max effect rel to E ₂	ref
E ₂	ER α	0.02	1		35
	ER β	0.06	1		31
	ER-CALUX	0.006	1	100	23
	E-screen	0.0045	1	a	32
	E-screen	0.005	1	a	33
	MVLN cells	0.005	1	a	33
	MVLN cells	0.015	1	a	34
NP	HGELN cells	0.040	1	a	33
	ER-CALUX	260	2.3 × 10 ⁻⁵	135	23
	E-screen	400	1.3 × 10 ⁻⁵	a	33
	MVLN cells	400	1.3 × 10 ⁻⁵	a	33
	MVLN cells	463	3.2 × 10 ⁻⁵	a	34
BPA	HGELN cells	500	8 × 10 ⁻⁵	a	33
	ER-CALUX	770	7.7 × 10 ⁻⁶	153	23
	E-screen	410	1.1 × 10 ⁻⁵	a	32
	E-screen	200	2.5 × 10 ⁻⁵	a	33
	MVLN cells	200	2.5 × 10 ⁻⁵	a	33
	HGELN cells	210	1.9 × 10 ⁻⁴	a	33

^a Not given in the literature.

study. This ER α -type response in the ER-CALUX, E-screen, and MVLN cell assays could be due to the fact that all of these cell systems mainly express endogenous ER α and estrogenicity is dependent on the most abundant receptor (14, 32). The luciferase induction by BPA of more than the maximum induction by E₂ (set at 100%) in the U2-OS ER α cells is in accordance with the induction previously shown in the T47D reporter cell line (ER-CALUX) (23) (Table 4). Legler et al. suggested that this “superagonism”, that is, a maximal response being higher than that induced by E₂, could be due to stimulated receptor and/or cofactor renewal (23). As the U2-OS cell line is devoid of endogenous receptors, it can be excluded that there is cross-reactivity of different receptors. Another explanation could be that BPA modulates the activity of several kinases involved in ERE activation. To gain more insight into the mechanism underlying this overstimulation, molecular studies are needed, which are, however, beyond the scope of the present study.

Recently Gustafsson and co-workers demonstrated, using the breast cancer cell line T47D with tetracycline-dependent inducible

ER β expression in addition to the ER α , that ER β expression inhibits proliferation induced by estradiol at 10 nM and by the drugs 4-hydroxytamoxifen and raloxifene at 1 μ M (14). This suggests that ER β can influence the cell proliferation induced by ER α . In the present study, BPA and NP are 10 times more estrogenic in the ER β cell line, compared to E₂, than in the ER α cell line. This is reflected by an EEF₁₀ α /EEF₁₀ β ratio of 0.1, which indicates that in theory BPA and NP might to some extent modulate the negative estrogenic effects via the ER α , because of their relatively high-affinity binding to the ER β . For BPA a specific migration limit of 0.05 mg/kg of food and a tolerable daily intake (TDI) of 0.01 mg/kg of body weight (bw)/day have been established. This TDI is above the average consumer intake, which is estimated by the SCF to range from 0.00048 mg/kg of bw/day for adults to 0.0016 mg/kg of bw/day for infants in a realistic estimate of exposure via food (38). Average intake of nonylphenol was estimated by Geunther et al. to be 7.5 μ g/person/day, which would be equal to 125 ng/kg of bw/day for a 60 kg person (39).

Various plasticizers, including DIHP (4), DEHP (14), DEHA (13), TEHTM (6), octyl-epoxystearate (8), and the benzoate mixture (9), showed estrogenic activity in vitro, activating the ER α with EEF₁₀ values between 10⁻⁸ and 10⁻⁷. Of all of these compounds, only TEHTM was estrogenic in the ER β cells, revealing an EEF₁₀ α /EEF₁₀ β comparable to those of NP and BPA. For DEHP human exposure is estimated to range from 30 μ g/kg of bw/day in the regular population to 457 μ g/kg of bw/day in hemodialysis patients (40). For DEHP the TDI of the general population is set at 0.05 mg/kg of bw/day (41). The specific migration limit of DEHA is 18 mg/kg of food, and the TDI is 0.3 mg/kg of bw/day. The median intake in The Netherlands and other western European countries is \approx 1 mg/day; this means 16.6 μ g/kg of bw/day for a 60 kg person (42).

The compounds showing estrogenic activity in our study have been tested in several other models for their estrogenic activity, showing variable results. DIHP was not found to be estrogenic in vitro in an estrogen receptor competitive ligand binding and mammalian- and yeast-based gene expression assays (43). On the other hand, a small estrogenic in vivo effect of DIHP on uterine wet weight in ovariectomized Sprague-Dawley rats was found (43). Takeuchi et al. (44) reported DIHP and DEHP to be active in an ER α -transfected CHO cell line with comparable EEF₂₀ values of, respectively, 6.3 \times 10⁻⁶ and 5.5 \times 10⁻⁶. The difference with our EEF₁₀ values can be due to the different cell types used or to differences in the interpolation of EC₁₀ or EC₂₀ values. DEHP was not estrogenic in the T47D ER-CALUX cell line (45); this discrepancy with our results in the ER α cells could be due to a relative overexpression of the ER α receptor in our U2-OS transfected cell line compared to the T47D cell line with endogenous ER α expression used in the ER-CALUX.

With respect to the safety assessments of the various plasticizers tested, the following findings of the present study are of interest. DEHA appeared to be less estrogenic (EEF₁₀ α of 4.9 \times 10⁻⁸) than DEHP (EEF₁₀ α of 2.2 \times 10⁻⁷) (Table 3); therefore, DEHA would be preferable over DEHP to use in food packaging with regard to the estrogenic effect only. However, given the current concern about the migration of adipates (46, 47), substances such as DEHA cannot be considered as viable alternatives to DEHP in food-contact applications, despite the result with our estrogenicity assay. Of course, other mechanisms for endocrine disruption, such as (anti)androgenicity, have to be taken into account as well.

Octyl-epoxystearate (8) is used as a secondary plasticizer in PVC, as is epoxidized soybean oil (ESO, 10). As ESO is not

estrogenic at all and octyl-epoxystearate very slightly estrogenic in our ER α cells, ESO seems to be a better choice to use as a plasticizer (Table 3). Our results, obtained with all plasticizers used in food packaging that are currently in use, reveal that several of these plasticizers are slightly estrogenic. Three newly developed plasticizers based on sorbitol, isosorbide di 2-ethylhexanoate (5), isosorbide-diiso-butyrate (11), and isosorbide-di-*n*-hexanoate (12), activated neither the ER α nor the ER β . Therefore, as far as estrogenicity is concerned, these plasticizers may be good replacements of existing plasticizers. However, additional data on these newly developed plasticizers regarding persistence, migration, toxicity, and accumulation in food products are necessary to be able to fully judge the added value of replacement.

Of the antioxidants, propanediolphosphite (19) was slightly estrogenic with an EEF₁₀ of 1.2 \times 10⁻⁸ in the ER α cell line. Of all antioxidants tested, propyl gallate (20) and BHA (23) were the only ones revealed to be estrogenic in both the ER α and ER β cells. As can be noted again, their potencies in the ER α were lower compared to the ER β -mediated activity, especially for BHA (Table 3). For these compounds, BHA exposure is estimated to be 0.11 mg/person/day (48) and the ADI ranges from 0.3 to 0.5 mg/kg of bw/day (30). Propyl gallate's ADI is 1.4 mg/kg of bw/day (30).

The response of the test compounds in the ER α and ER β cell lines in the presence of the EC₅₀ value (5 and 100 pM for the ER α and ER β cell lines, respectively) revealed that all combination effects were additive. This indicates that estrogenic effects of compounds in vitro are additive, a finding which should be studied in vivo as well. The concentrations of E₂ used for these combined exposures (5 and 100 pM) are commonly found in female blood, and they are even low compared to E₂ levels during pregnancy (49).

All together the results of the present study reveal that plasticizers have estrogenic activity in the ER α U2-OS reporter cell line, although at \approx 100 times higher concentrations than those of the known pseudo-estrogens BPA and NP. However, because additivity seems to occur and all of these compounds are regularly used in food packages, together they may contribute significantly to the estrogenic effects of the total pool of compounds with estrogenic activity originating from the food chain. Most compounds are estrogenic in the ER α cell line, indicating that the effects predominantly will occur in tissues expressing ER α , such as mammary gland, uterus, and testes (10). When compared to the effects of E₂ (1), for NP (3), BPA (2), TEHTM (6), and propyl gallate (20), the EEF₁₀ is relatively higher in the ER β than in the ER α , resulting in an EEF₁₀ α /EEF₁₀ β ratio lower than 1. This indicates that these compounds might give rise to relatively larger formation of ER α /ER β heterodimers than upon exposure to E₂, thereby possibly diminishing the negative effects of the ER α as seen in vitro (12, 13). The plasticizers DIHP (4), DEHP (14), DEHA (13), octyl epoxystearate (8), and the benzoate mixture (9) and the antioxidant propanediolphosphite (19) are all exclusively estrogenic via the ER α and might therefore only have adverse endocrine-disrupting effects on human health.

Finally, comparison of the EC₅₀ values obtained in the ER α and ER β U2-OS cells to the EC₅₀ values obtained in other models testing estrogenic activity indicates that the EC₅₀ values in most of these other cell systems are more in line with the EC₅₀ obtained in the ER α cells than with the EC₅₀ for the ER β cells. This observation supports the importance of detecting characteristics for ER α and ER β response separately in independent models such as the U2-OS ER α and ER β cells, as done

in the present study. Food-packaging-associated compounds are estrogenic at concentrations 100 times higher than the known compounds NP and BPA. The results obtained in this study are important in determining the different reactions of the same compounds on two different types of ER. Both ERs are present in different tissues and able to modulate each other's activity. For most compounds daily intake estimates are in the range from 0 to 0.457 $\mu\text{g}/\text{kg}$ of bw/day, and therefore the concentrations tested in vitro were high compared to the average human intake; however, they were important in determining the intrinsic potential of these compounds to act as estrogenic agonists. To be able to translate the in vitro findings to the in vivo situation, currently studies are being performed with ER reporter gene mice to establish the estrogenicity of some of the estrogenic food-packaging-associated compounds in vivo.

ABBREVIATIONS USED

U2-OS, human osteoblastic cell line; ER α/β , estrogen receptor alpha/beta; ERE, estrogen responsive elements; Luc, luciferase gene; EC₅₀, concentration at which 50% of the effect is reached; pM, picomolar; DDT, dichlorodiphenyltrichloroethylene; RLU, relative light units; DCC, dextran-coated charcoal.

NOTE ADDED AFTER ASAP PUBLICATION

The original posting of May 20, 2006, has been corrected. Some values in the max effect (%) columns of Table 3 have been corrected in the revised ASAP posting of May 26, 2006.

LITERATURE CITED

- Key, T. J.; Verkasalo, P. K.; Banks, E. Epidemiology of breast cancer. *Lancet Oncol.* **2001**, 2 (3), 133–140.
- Visser, O.; Siesling, S.; v. Dijck, J. A. A. M. *Incidence of cancer in The Netherlands 1999/2000*; Association of Comprehensive Cancer Centres: Utrecht, The Netherlands, 2003.
- Wolff, M. S.; Collman, G. W.; Barrett, J. C.; Huff, J. Breast cancer and environmental risk factors: epidemiological and experimental findings. *Annu. Rev. Pharmacol. Toxicol.* **1996**, 36, 573–596.
- Davis, D. L.; Axelrod, D.; Bailey, L.; Gaynor, M.; Sasco, A. J. Rethinking breast cancer risk and the environment: the case for the precautionary principle. *Environ. Health Perspect.* **1998**, 106 (9), 523–529.
- Hamajima, N.; Hirose, K.; Tajima, K.; Rohan, T.; Calle, E. E.; Heath, C. W., Jr.; Coates, R. J.; Liff, J. M.; Talamini, R.; Chantarakul, N., et al. Alcohol, tobacco and breast cancer—collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. *Br. J. Cancer* **2002**, 87 (11), 1234–1245.
- Wiseman, R. A. Breast cancer hypothesis: a single cause for the majority of cases. *J. Epidemiol. Community Health* **2000**, 54 (11), 851–858.
- Toniolo, P. G.; Levitz, M.; Zeleniuch-Jacquotte, A.; Banerjee, S.; Koenig, K. L.; Shore, R. E.; Strax, P.; Pasternack, B. S. A prospective study of endogenous estrogens and breast cancer in postmenopausal women. *J. Natl. Cancer Inst.* **1995**, 87 (3), 190–197.
- van der Woude, H.; Ter Veld, M. G. R.; Jacobs, N.; van der Saag, P. T.; Murk, A. J.; Rietjens, I. M. C. M. The stimulation of cell proliferation by quercetin is mediated by the estrogen receptor. *Mol. Nutr. Food Res.* **2005**, 49 (8), 763–771.
- Kuiper, G. G. J. M.; Carlsson, B.; Grandien, K.; Enmark, E.; Hagglad, J.; Nilsson, S.; Gustafsson, J. A. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. *Endocrinology* **1997**, 138 (3), 863–870.
- Mueller, S. O.; Korach, K. S. Mechanism of estrogen receptor mediated agonistic and antagonistic effects. *The Handbook of Environmental Chemistry*; Metzler, M., Ed.; Springer-Verlag: Berlin, Germany, 2001; Vol. 3, Part L, pp 1–25.
- Hanstein, B.; Liu, H.; Yancisin, M. C.; Brown, M. Functional analysis of a novel estrogen receptor-beta isoform. *Mol. Endocrinol.* **1999**, 13 (1), 129–137.
- Lazennec, G.; Bresson, D.; Lucas, A.; Chauveau, C.; Vignon, F. ER beta inhibits proliferation and invasion of breast cancer cells. *Endocrinology* **2001**, 142 (9), 4120–4130.
- Paruthiyil, S.; Parmar, H.; Kerekatte, V.; Cunha, G. R.; Firestone, G. L.; Leitman, D. C. Estrogen receptor beta inhibits human breast cancer cell proliferation and tumor formation by causing a G2 cell cycle arrest. *Cancer Res.* **2004**, 64 (1), 423–428.
- Strom, A.; Hartman, J.; Foster, J. S.; Kietz, S.; Wimalasena, J.; Gustafsson, J. A. Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D. *Proc. Natl. Acad. Sci. U.S.A.* **2004**, 101 (6), 1566–1571.
- Bovee, T. F. H.; Helsdingen, R. J. R.; Rietjens, I. M. C. M.; Keijer, J.; Hoogenboom, R. L. A. P. Rapid yeast estrogen bioassays stably expressing human estrogen receptors alpha and beta, and green fluorescent protein: a comparison of different compounds with both receptor types. *J. Steroid Biochem. Mol. Biol.* **2004**, 91 (3), 99–109.
- Jobling, S.; Reynolds, T.; White, R.; Parker, M. G.; Sumpter, J. P. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. *Environ. Health Perspect.* **1995**, 103, 582–587.
- Soto, A. M.; Sonnenschein, C.; Chung, K. L.; Fernandez, M. F.; Olea, N.; Serrano, F. O. The E-SCREEN assay as a tool to identify estrogens: an update on estrogenic environmental pollutants. *Environ. Health Perspect.* **1995**, 103 (Suppl. 7), 113–122.
- Moore, N. P. The oestrogenic potential of the phthalate esters. *Reprod. Toxicol.* **2000**, 14 (3), 183–192.
- Colon, I.; Caro, D.; Bourdony, C. J.; Rosario, O. Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. *Environ. Health Perspect.* **2000**, 108 (9), 895–900.
- Sonnenschein, C.; Soto, A. M. An updated review of environmental estrogen and androgen mimics and antagonists. *J. Steroid Biochem. Mol. Biol.* **1998**, 65 (1–6), 143–150.
- Laws, S. C.; Carey, S. A.; Ferrell, J. M.; Bodman, G. J.; Cooper, R. L. Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats. *Toxicol. Sci.* **2000**, 54 (1), 154–167.
- Chapin, R. E.; Delaney, J.; Wang, Y.; Lanning, L.; Davis, B.; Collins, B.; Mintz, N.; Wolfe, G. The effects of 4-nonylphenol in rats: a multigeneration reproduction study. *Toxicol. Sci.* **1999**, 52 (1), 80–91.
- Legler, J.; van den Brink, C. E.; Brouwer, A.; Murk, A. J.; van der Saag, P. T.; Vethaak, A. D.; van der Burg, B. Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human T47D breast cancer cell line. *Toxicol. Sci.* **1999**, 48 (1), 55–66.
- Odum, J.; Pyrah, I. T. G.; Foster, J. R.; Van Miller, J. P.; Joiner, R. L.; Ashby, J. Comparative activities of *p*-nonylphenol and diethylstilbestrol in noble rat mammary gland and uterotrophic assays. *Regul. Toxicol. Pharmacol.* **1999**, 29 (2 Part 1), 184–195.
- Krishnan, A. V.; Stathis, P.; Permuth, S. F.; Tokes, L.; Feldman, D. Bisphenol A: an estrogenic substance is released from polycarbonate flasks during autoclaving. *Endocrinology* **1993**, 132 (6), 2279–2286.
- Brotons, J. A.; Olea-Serrano, M. F.; Villalobos, M.; Pedraza, V.; Olea, N. Xenoestrogens released from lacquer coatings in food cans. *Environ. Health Perspect.* **1995**, 103 (6), 608–612.
- Olea, N.; Pulgar, R.; Perez, P.; Olea-Serrano, F.; Rivas, A.; Novillo-Fertrell, A.; Pedraza, V.; Soto, A. M.; Sonnenschein, C. Estrogenicity of resin-based composites and sealants used in dentistry. *Environ. Health Perspect.* **1996**, 104 (3), 298–305.

- (28) Colerangle, J. B.; Roy, D. Profound effects of the weak environmental estrogen-like chemical bisphenol A on the growth of the mammary gland of Noble rats. *J. Steroid Biochem. Mol. Biol.* **1997**, *60* (1–2), 153–160.
- (29) Steinmetz, R.; Mitchner, N. A.; Grant, A.; Allen, D. L.; Bigsby, R. M.; Ben-Jonathan, N. The xenoestrogen bisphenol A induces growth, differentiation, and c-fos gene expression in the female reproductive tract. *Endocrinology* **1998**, *139* (6), 2741–2747.
- (30) Sheftel, V. O. *Indirect Food Additives and Polymers: Migration and Toxicology*; CRC Press: Boca Raton, FL, 2000; 1304 pp.
- (31) Quaedackers, M. E.; Van Den Brink, C. E.; Wissink, S.; Schreurs, R. H. M. M.; Gustafsson, J. A.; Van Der Saag, P. T.; Van Der Burg, B. B. 4-hydroxytamoxifen trans-represses nuclear factor-kappa B activity in human osteoblastic U2-OS cells through estrogen receptor (ER)alpha, and not through ER beta. *Endocrinology* **2001**, *142* (3), 1156–1166.
- (32) Stroheker, T.; Picard, K.; Lhuguenot, J. C.; Canivenc-Lavier, M. C.; Chagnon, M. C. Steroid activities comparison of natural and food wrap compounds in human breast cancer cell lines. *Food Chem. Toxicol.* **2004**, *42* (6), 887–897.
- (33) Gutendorf, B.; Westendorf, J. Comparison of an array of in vitro assays for the assessment of the estrogenic potential of natural and synthetic estrogens, phytoestrogens and xenoestrogens. *Toxicology* **2001**, *166* (1–2), 79–89.
- (34) Van den Belt, K.; Berckmans, P.; Vangenechten, C.; Verheyen, R.; Witters, H. Comparative study on the in vitro/in vivo estrogenic potencies of 17beta-estradiol, estrone, 17alpha-ethynodiol and nonylphenol. *Aquat. Toxicol.* **2004**, *66* (2), 183–195.
- (35) Sonneveld, E.; Jansen, H. J.; Riteco, J. A. C.; Brouwer, A.; van der Burg, B. Development of androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays. *Toxicol. Sci.* **2005**, *83* (1), 136–148.
- (36) Horwitz, K. B.; McGuire, W. L. Estrogen control of progesterone receptor in human breast-cancer—correlation with nuclear processing of estrogen-receptor. *J. Biol. Chem.* **1978**, *253* (7), 2223–2228.
- (37) Kuiper, G. G. J. M.; Lemmen, J. G.; Carlsson, B.; Corton, J. C.; Safe, S. H.; van der Saag, P. T.; van der Burg, B.; Gustafsson, J. A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. *Endocrinology* **1998**, *139* (10), 4252–4263.
- (38) EC, SCF. Opinion of the Scientific Committee on Food on Bisphenol A; 2002; http://europa.eu.int/comm/food/fs/sc/scf/out128_en.pdf.
- (39) Guenther, K.; Heinke, V.; Thiele, B.; Kleist, E.; Prast, H.; Raecker, T. Endocrine disrupting nonylphenols are ubiquitous in food. *Environ. Sci. Technol.* **2002**, *36* (8), 1676–1680.
- (40) Doull, J.; Cattley, R.; Elcombe, C.; Lake, B. G.; Swenberg, J.; Wilkinson, C.; Williams, G.; van Gemert, M. A cancer risk assessment of di(2-ethylhexyl)phthalate: application of the new U.S. EPA Risk Assessment Guidelines. *Regul. Toxicol. Pharmacol.* **1999**, *29* (3), 327–357.
- (41) EC, EFSA. Bis(2-ethylhexyl)phthalate (DEHP) for use in food contact materials. EFSA Journal: 2005; p 243.
- (42) EC, SCF. Opinion of the scientific committee on food on a survey on dietary intake of the food contact material di-2-(ethylhexyl) adipate (DEHA); 2000; http://europa.eu.int/comm/food/fs/sc/scf/out77_en.pdf.
- (43) Zacharewski, T. R.; Meek, M. D.; Clemons, J. H.; Wu, Z. F.; Fielden, M. R.; Matthews, J. B. Examination of the in vitro and in vivo estrogenic activities of eight commercial phthalate esters. *Toxicol. Sci.* **1998**, *46* (2), 282–293.
- (44) Takeuchi, S.; Iida, M.; Kobayashi, S.; Jin, K.; Matsuda, T.; Kojima, H. Differential effects of phthalate esters on transcriptional activities via human estrogen receptors [alpha] and [beta], and androgen receptor. *Toxicology* **2005**, *210* (2–3), 223–233.
- (45) Legler, J.; Dennekamp, M.; Vethaak, A. D.; Brouwer, A.; Koeman, J. H.; van der Burg, B.; Murk, A. J. Detection of estrogenic activity in sediment-associated compounds using in vitro reporter gene assays. *Sci. Total Environ.* **2002**, *293* (1–3), 69–83.
- (46) Goulas, A. E.; Anifantaki, K. I.; Kolioulis, D. G.; Kontominas, M. G. Migration of di-(2-ethylhexyl)adipate plasticizer from food-grade polyvinyl chloride film into hard and soft cheeses. *J. Dairy Sci.* **2000**, *83* (8), 1712–1718.
- (47) Tsumura, Y.; Ishimitsu, S.; Saito, I.; Sakai, H.; Kobayashi, Y.; Tonogai, Y. Eleven phthalate esters and di(2-ethylhexyl) adipate in one-week duplicate diet samples obtained from hospitals and their estimated daily intake. *Food Addit. Contam.* **2001**, *18* (5), 449–460.
- (48) Thomson, B. M.; Cressey, P. J.; Shaw, I. C. Dietary exposure to xenoestrogens in New Zealand. *J. Environ. Monit.* **2003**, *5* (2), 229–235.
- (49) Pasqualini, J. R.; Kincl, F. A. *Hormones and the Fetus*, 1st ed.; Pergamon Press: New York, 1985; Vol. I, 437 pp.

Received for review November 17, 2005. Revised manuscript received April 13, 2006. Accepted April 14, 2006. This study was financially supported by NWO-Aspasia Grant 015.001.130. D.v.E. was supported by the Economy, Ecology, Technology (EET) program, a joint program of the Dutch Ministry of Economic Affairs, the Ministry of Education, Culture and Science and the Ministry of Agriculture, Nature and Food Quality.

JF052864F